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We study the stationary properties as well as the nonstationary dynamics of the one-dimensional partially
asymmetric exclusion process with position-dependent random hop rates. Relating the hop rates to an energy
landscape the stationary current J is determined by the largest barrier in a finite system of L sites and the
corresponding waiting time 7~ J~! is related to the waiting time of a single random walker, 7,,,, as 7~ T:‘/f The
current is found to vanish as J~ L2, where z is the dynamical exponent of the biased single-particle Sinai
walk. Typical stationary states are phase separated: At the largest barrier almost all particles queue at one side
and almost all holes are at the other side. The high-density (low-density) region is divided into ~L"? con-
nected parts of particles (holes) which are separated by islands of holes (particles) located at the subleading
barriers (valleys). We also study nonstationary processes of the system, like coarsening and invasion. Finally
we discuss some related models, where particles of larger size or multiple occupation of lattice sites is

considered.
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I. INTRODUCTION

The stochastic dynamics of self-driven particles on one-
dimensional lattices is one of the key problems of nonequi-
librium physics [1,2]. Models of this kind have been used in
order to describe such problems as, e.g., highway traffic [3]
or the dynamics of motor proteins along actin filaments or
microtubuli [4]. These two examples have in common that
the directed particle motion against dissipative forces is
maintained by the steady input of energy, a feature that leads
to generic nonequilibrium behavior of the system. The drift
of the particles also leads to a strong sensitivity to spatial
inhomogeneities; e.g., in contrast to equilibrium systems,
even a single local defect may lead to bulk effects such as,
e.g., separation into macroscopic low- and high-density do-
mains [5]. Moreover disorder of any type may also strongly
influence the transport capacities of the system [6-9]. This is
in particular true for the case of strong disorder—i.e., real-
izations of the disorder where the local direction of the bias
is nonuniform [10-12,19]. The prototype of this kind of sto-
chastic motion is the Sinai walk, which has been studied to a
great extent [13]. The stochastic motion of a Sinai walker is
characterized by large velocity fluctuations. The origin of
these fluctuations is most easily understood if one translates
the local hop rates into energy differences; i.e., a forward
bias corresponds to a negative slope of the corresponding
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energy landscape and vice versa. Obviously, the energy land-
scape is not flat in the case of strong disorder, but character-
ized by barriers of different heights. The time a walker
spends in front of such a barrier increases exponentially with
the height of the barrier, and therefore the largest barriers
determine the behavior of the system.

There exists a large class of both quantum and stochastic
models where the quenched disorder dominates the fluctua-
tions in the system and where a connection to the Sinai walk
can be made [14]. In this respect one can mention random
quantum spin chains [15,16] or reaction diffusion models
with quenched disorder [17]. Besides a number of experi-
mental setups have been identified, where this model prop-
erly describes the particle dynamics—e.g., the translocation
of an RNA strand through a pore [18] or the motion of mo-
lecular motors on microtubules [4].

While most of the models refer to the single-particle case,
more recently the effect of strong disorder on driven-
diffusive many-particle systems—i.e., the so-called asym-
metric exclusion process with strong disorder—has been in-
vestigated [10-12,19-22]. It has been shown that the
properties of the system largely depend on the way the dis-
order is implemented. In the case of particle disorder—i.e.,
for the case where the hop rates of the particles are quenched
random variables [19]—the transport properties of the sys-
tem are in close analogy to the single-particle system [11,12]
both in the Griffiths phase—i.e., in the case of a tilted energy
landscape—and at the critical point—i.e., for a vanishing
drift velocity of the particles. This implies that the many-
particle effects are most pronounced for quantities that are
related to the arrangement of the particles. In the case of
lattice disorder, however, the transport capacities of single-
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FIG. 1. Schematic energy landscape.

and many-particle systems are different [10,11], because the
presence of many particles alters the effective heights of the
energy barriers. A relation between the stationary current for
particle disorder and for lattice disorder has been proposed in
Ref. [11]. In the present work we elaborate on the properties
of the distribution of the stationary current and show connec-
tions with extreme value statistics [23,24]. We also discuss
the properties of the density profile as well as the conse-
quences for the coarsening behavior. Some of the results ob-
tained in this work may also be relevant for models which
are closely related to the exclusion process, such as the
Heisenberg chain [25] and the dimer evaporation and depo-
sition process [26].

The article is organized as follows. The model is intro-
duced in Sec. II, and the basic properties of the single-
particle motion in the framework of the concept of trapping
or waiting times are given in Sec. III. The stationary proper-
ties of the many-particle motion is presented for non zero
average bias in Sec. IV and for zero average bias in Sec. V.
Some related models are discussed in Sec. VI, and nonsta-
tionary phenomena are described in Sec. VII. In the final
section we will summarize and discuss our results.

II. MODEL

We consider the partially asymmetric exclusion process
(PASEP) with site-dependent hop rates on a one-dimensional
lattice. Each lattice site i can either be empty—i.e., ;=0—or
occupied by a single particle, 7,=1.

The time evolution of the local configuration (7;,7;,) is
described by

(1,0) — (0,1)  with rate p;, (1)

(0,1) — (1,0) with rate g;; (2)

i.e., particles are hopping in the positive direction (from i to
site i+ 1) with rate p; and in the negative direction (from site
i+1 to site i) with rate g;.

It is useful to relate the stochastic dynamics to an energy
landscape by the relation

4i = e_(Ui_UHl)’ (3)
Di

where U; is the energy assigned to site i (relative to a refer-
ence value U;=0). A typical sample of this type of landscape
is shown in Fig. 1. Links with forward bias (g;<p;) corre-
spond to descending links of the energy landscape while
those with backward bias (¢;> p;) to ascending ones. It turns
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out that the large-scale behavior of the process is determined
by the wandering properties of the energy landscape. The
relation between energy landscape and system properties will
be discussed in detail in the next section.

The hop rates are independent and identically distributed
random variables taken from the distributions, p(p)dp and
7(g)dq, which will be specified later. We restrict ourselves to
types of randomness where forward- and backward-directed
links are present with finite probability; i.e., the easy direc-
tion of hopping is disordered as well. We define a control
parameter as the average asymmetry between forward and
backward rates as follows:

_ [11‘1 p]av - [11‘1 Q]av
~ var[In p] + var[In ¢]’

(4)

such that for A>0 (A <0) the particles move on average to
the right (left). Here and in the following, [---],, denotes
average over quenched disorder, whereas var(x) stands for
the variance of x. Note that A~lim; . U;/L; thus, the
control-parameter is proportional to the average slope of the
potential landscape.

In most of the explicit calculations a binary disorder dis-
tribution is used,

pp)=célp-1)+(1-c)é(p-r),

pigi=r<1 foralli, (5)

where the control parameter is given by

1-2¢

- 2¢c(1-¢)nr ©

This implies that a biased motion to the right is realized for
I1=sc<1/2.
Alternatively we also use a power-law distribution

1
pp)=pp P 0<p=1,

—1D
90 _141p

p 1

m(q) = 0 <gq=qo, (7)

where D*=var{In p]=var[In ¢] measures the strength of dis-
order and A=In ¢,/ (2D?).

III. SINGLE-PARTICLE MOTION: THE CONCEPT
OF TRAPPING TIMES

We wish to introduce in the next section a simple phe-
nomenological approach to biased exclusion process, which
is based on the dynamics of the corresponding single-particle
problem, known as the Sinai walk [13,14]. This is a thor-
oughly studied system, and here we recapitulate some of its
properties which are necessary to understand the many-
particle problem: For a periodic chain of length L the station-
ary drift velocity v, for a given realization of disorder is
given by [27]
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11 L ! L g -1
—=-2 (I—H—") , (8)
vo Lig pillin i=1 Pi

where

L-1 k -1
H,»+1=(1+2H%ﬂ) 9)

k=1 j=1 DPij

is the persistence probability [28] at site i+ 1. This quantity
measures the fraction of walks starting at site i+1 and pass
the link 7,i+1 first from the left—i.e., after a complete tour
along the chain [29].

It is obvious that the regions where the particle spends
long times are valleys of the energy landscape, which are
followed by a large barrier. These sections of the energy
landscape can be represented by Brownian excursions [30]—
i.e., returning random walks staying in the upper half-plane
[see the section (i,is) in Fig. 1].

It is obvious that one can define a (single-particle) trap-
ping time for each barrier (Brownian excursion):

1
7= . (10)

- pilliy,

which is the time needed to escape from that barrier and
where i is the starting point of the corresponding excursion—
i.e., the minimal energy site of the valley in front of the
barrier (site 7, in Fig. 1). It is important to notice that the
trapping times take the form of a Kesten random variable
[31]. Moreover, trapping times belonging to different barriers
are practically independent, as the terms corresponding to
links outside the barrier are exponentially small. It is known
that in the large-L limit the probability distribution of such
variables has an algebraic tail:

P(T) — T—l—l/z’

(11)

where the exponent z is the positive root of the equation

4] -

Choosing the bimodal disorder as defined in Eq. (5) one
obtains

(12)

Inr

(e -1) (13)

Z
Now concerning the drift velocity of the random walker it
is the inverse of the average trapping time for z<<1. If, how-
ever, 7> 1, the average of the trapping time is divergent and
the motion of a single particle is determined by the largest
trapping time 7,,, the typical value of which follows from the
relation [23] [7 P(7)d7L=0(1) and given by 7,,~ L*.
The persisterr;ce probability and thus the trapping time at a
given barrier is related to the potential landscape, and for
large trapping times it is asymptotically given by
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L-1

T~ E —eUHk_Ui ~ eUi7
k=1 Pi+k

(14)

which is well approximated by the largest term in the sum:
5i=maxk(Ui+k_Ui)-

In this way the motion of the particle for z>1 is influ-
enced only by the deep valleys and the corresponding large
barriers, and ultimately its velocity is determined by passing

the largest barrier in the system, since 7,,~eYn and ﬁm

=max 17,-. The intimate relation between the mobility of the
particle and structure of the energy landscape led to the idea
of renormalizing the energy landscape [14,32]. By using the
renormalization scheme and alternative approaches one ob-
tains the same form of the trapping time distribution [33] as
given in Eq. (11).

IV. MANY-PARTICLE MOTION

We now turn to the many-particle case; i.e., we put N
=O(L) particles on the lattice. First we consider a special
form of disorder for which exact results can be derived.
These are then generalized for more general form of disorder
using phenomenological and scaling considerations.

A. Extreme binary disorder

Here we consider the bimodal disorder as defined in Eq.
(5) where the landscape is represented by a random walk
having a step of size In r with probability (1—c¢) and of size
—In r with probability (c¢). In the limit ¢<<1 the walk is
strongly biased, having typically downwards steps and the
rare upward steps are forming the barriers. If we also have
r<< 1, the large barriers are typically straight, since for a large
energy scale the fluctuations are reduced [32]. The largest
barrier consists of [, upward steps and has a height of

l7m=lm In 77!, and we have for the typical value c¢/mL=1. It
is easy to check that the trapping time for single-particle

motion is 7,,~ rm~L7 and the dynamical exponent z'
=In r/In ¢™! corresponds to that in Eq. (13) in the given limit.

Also for many particles the largest barrier plays the domi-
nant role and we analyze first the stationary current in a
system having just one large barrier of length [,,. This prob-
lem corresponds to a PASEP with particle input and output
against the direction of the bias. In the stationary state of this
model, which is known exactly [34], the system is half-filled
and there is a sharp front in the middle of the chain, which is
the consequence of particle-hole symmetry. As a conse-
quence particles (and holes) have to pass a half-filled barrier

of effective height ﬁm/ 2. Consequently the effective trap-

ping time is 7,,~ 7,1,{2 and the stationary current is given by

J~ L, (15)

which goes to zero in the thermodynamic limit.

Now, if we consider the complete potential landscape, the
basic features of the above considerations remain true, since
the largest barrier governs the stationary dynamics of the
system. In particular in the stationary state there is a sharp
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FIG. 2. Schematic form of the potential landscape for extreme
disorder and the typical position of the particles. The high-density
and low-density phases are separated at the middle of the largest
barrier (2); the arrow indicates the height U,,/2. Deep valleys in the
low-density phase are filled until the effective barrier is U,,/2 (3)
and high barriers in the high-density phase are vacant above a level
of U,,/2 (1); see text.

front located at the middle of the largest barrier. Thus, due to
particle-hole symmetry, the largest barrier is half-filled and
the stationary current is related to the largest effective trap-
ping time and given by Eq. (15). The subleading barriers lead
to a substructure both in the high-density and in the low-
density phases, which can be related to each other by using
the particle-hole symmetry. In the low-density region it is

easy to see that small barriers with U i< ﬁm/ 2 are completely
empty, since they do not cause sufficient resistivity for the

current. Only sufficiently large barriers with l7i> l~]m/ 2 are
able to slow down the particle and cause jams. These barriers

will be filled up to the level ljl»—ﬁm/ 2 as a consequence of
the conservation of the stationary current. The typical num-
ber of occupied barriers in the low-density phase is given by
c?L~L'"2. In the high-density phase, due to particle-hole
symmetry, holes are accumulated only in such subleading

barriers for which U;> U,,/2. The number of holes in such a

barrier scales as 17,»— l~]m/ 2, and the typical number of occu-
pied barriers is O(L'?).

B. General form of disorder

Next we extend our discussion to general form of disor-
der, when it may be still assumed that there is a sharp front
separating the high-density and low-density regions. If this is
the case, the front is located at a position where the escape
rate of particles and the escape rates of holes which leave the
front to the left through the high-density region are equal,
which is a necessary condition for the localization of the
front. As in the extreme disorder case, the front is located in
the middle of the largest barrier. The potential landscape
compared with that for extreme disorder in Fig. 2 is modified
in such a way that instead of long straight lines the barriers
and valleys are made by Brownian excursions.

1. Distribution of the current

The typical value of the stationary current follows from
the same reasoning as in Sec. IV A: it is given by the square
root of the trapping time of a single walker at the largest
barrier. Furthermore, the trapping time distribution follows
an asymptotically algebraic distribution given by (11).

Therefore for a given system we have to find the maxi-
mum out of O(L) algebraically distributed random variables,
a problem which is thoroughly studied in the mathematical

PHYSICAL REVIEW E 74, 061101 (2006)

In[P(x)]

x=-In{JL})

FIG. 3. The distribution of the current, calculated with uniform
randomness with gg=1/3, where z=1.335. The number of samples
is 10 000. The solid line is the Fréchet distribution given in Eq.
(16).

literature (see, e.g., [23]) and has demonstrated to work for
strong Griffiths singularities in disordered systems [24]. For
our case it follows that the current is described by the well-
known Fréchet distribution given by

S 2w
P(J) = ZJZ’Z—le—J”“, (16)

in terms of J=J,JL¥2, where the nonuniversal constant Jj,
depends on the prefactor of the tail. Thus, the current scales
with the system size as given in Eq. (15).

Although the above results hold for generic hop rate dis-
tributions, a caveat is in order concerning the type of ran-
domness. Besides the bimodal one, one may also consider
hop rate distributions where the support of the forward rates
p does not have a positive lower bound, such as for the
power-law distribution in Eq. (7). In this case it may happen
that the current is limited by the lowest hop rate
Pmin~LP—i.e., by a single slow link rather than by the
maximal amplitude of a Brownian excursion, which is given
in Eq. (15). Clearly, the exponent which enters in Eq. (16)
and as well as in the scaling relation of the current (15) is
now max{z/2,D}. For a uniform distribution with D=1 the
current scales as J(L) ~ L™¥? for z>>2 whereas J(L) ~ L' for
1 <z<2. Numerical results for the distribution of current in
the anomalous region 1 <z<<2 are shown in Fig. 3, whereas
numerical results for the bimodal randomness, for which the
anomalous scenario never sets in, can be found in Ref. [12].
In what follows we assume that z/2>D always holds and
the current is controlled by an extended region.

2. Density profile

The density profile for general form of disorder has the
same qualitative features as for the extreme disorder in Sec.
IV A. The system consists of a high-density phase, where all
the lattice sites are typically occupied, and of a low-density
phase, in which all the lattice sites are typically vacant. The
front separating the two phases is just at the middle of the
largest barrier (see Fig. 4). In the low-density phase only the
large valleys with U;=U,,/2 are filled to a level U;—U,,/2.
Similarly, in the high-density phase only the large barriers
with U,=U,,/2 are partially filled up to U,,/2.
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FIG. 4. Numerically calculated stationary density profile of a
sample of size L=512. The hop rates were generated with the bi-
modal distribution with ¢=0.3 and r=0.5 in Eq. (5).

The number of occupied valleys, n(L) (and the number of
partially filled barriers), can be estimated from the condition
that at these barriers the single-particle trapping time be
larger than 1/J; thus,

n(L) ~ LJOC p(Ddr~ LI, (17)

117

where we used (11) and the fact that, due to their finite typi-
cal extension, the number of barriers in the system is of the
order of L. Keeping in mind the scaling relation of the cur-
rent in (15), we obtain n(L)~L"?, in agreement with the
extreme disorder case in Sec. IV A. This finding is in good
agreement with numerical results shown in Fig. 5.

The length of Brownian excursions has an exponential
distribution [35], with a finite A-dependent characteristic
value. Although the length of the L'? longest excursions is
O(In L) [23], the length of the empty domain in each of these
barriers equals approximately half of the length of the largest
barrier, so one can show that the number of particles they
contain is typically finite.

The total number of particles clustering behind the sub-
leading barriers is thus of the order of L'?. The other O(L)
particles must be behind the largest barrier, where a macro-
scopic cluster of particles is formed. According to the discus-

45
4t
3.5 ¢
3l
25 1
ol
15}
1

In(n)

2 3 4 5 6 7 8

FIG. 5. Average number of points where the density profile
crosses the line p(x)=1/2 calculated numerically for different sys-
tem sizes L. Binary randomness were used with r=0.5 and ¢=0.2,
whereas the average was performed over 100 samples. The straight
line has slope of 1/2.
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sion given above, the particles can be categorized into three
classes as was carried out in a similar way for the disordered
zero-range process [12].

Almost all particles are trapped at the largest barrier,
forming a condensate, where the density is close to 1. The
spatial extension of the condensate, which is equal to the
number of trapped particles, is thus

N.~N. (18)

This region is, however, cut into sections of size ~L!? by
vacant clusters, which have a finite length.

In the remaining part of the system which is of size
~(L-N), particle clusters of finite size are found, separated
by a typical distance of L'2. Due to the small local velocity
in these dense clusters, the contribution of a single particle to
the current is small compared to freely moving particles;
therefore, we call these particles inactive. Their total number
is given by

N, ~ L. (19)

The third class of particles, the active ones, move practi-
cally freely between clusters of inactive particles. Conse-
quently, they have a significant contribution to the current. In
order to estimate the number of active particles, we notice
that due to the low particle density within sections between
two neighboring clusters of inactive particles the dynamics
of active particles corresponds to the dynamics of a single
random walker in a disordered landscape. The typical length
of these section is ~L'"?, and the largest trapping time of an
active particle is ~v7 ~ L¥2 Now, if z<1, the particle ve-
locity v is L independent. Making use of the finite-size scal-
ing form of the current, we obtain for the density p=J/v
~ L2, which is indeed vanishing in the large-L limit. The
total number of active particles is thus

Na NLI—Z/Z (Z < 1)

For z> 1, the largest barrier in the empty section determines
the travel time and the average velocity of particles scales
according to v(L)~L""92, The density thus scales as p
=J/v~L""2, which means that typically O(1) particles re-
side between two inactive clusters. In this case the total num-
ber of active particles is given by

N,~L" (z>1).

According to the discussion above, the distribution of inter-
particle distances in a finite system of size L has a finite

(20)

21

cutoff: they have the scaling form [~ L¥? for z<<1, whereas

I~L"2 for z>1.

Next, the number of particles at the second largest barrier
n, is analyzed. The height of the second largest barrier is
proportional to In L just as the height of the largest one. For
the bimodal randomness where the increments of the poten-
tial are fixed, the length of the barrier must grow with the
system size at least as O(In L). On the other hand, it is gen-
erally true for types of randomness under consideration,
where the current is controlled by an extended cluster of
exponentially rare links. The typical value for (n,) is thus
O(InL). In certain samples, however, where the single-
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particle trapping times 7; and 7, at the first and second larg-
est barriers, respectively, are almost degenerate, meaning that
7, < 7, the occupation {n,) is much larger than the typical
value O(InL). We show below that these samples give a
singular contribution to the sample-averaged occupation
[(n3)],- In samples where the two largest barriers are almost
degenerate, n, has large-scale fluctuations and the dominant
contribution to the thermal average (n,) comes from the fluc-
tuations where n, is much larger than its most probable
value. In the latter case half-filling is realized at the second
barrier, leading to an escape time \7,. Not considering the
improbable samples with higher degeneracies (the contribu-
tion of which has in fact the same type of singularity), the
number of particles located at barriers other than the two
largest ones is negligible and the problem reduces to an ef-
fective two-barrier process with hop rates \'7; and \7,. Tak-
ing into account, that the total number of particles is N, we
obtain for the thermal average [12]

N+l
1- CYN+1 ’

where a= \e"m and (n,)=N/2 for a=1. Using the distri-
bution function p(a), we can average over realizations:
[(nz)]av=f(1)<n)(a)p(a)da, which is dominated by the contri-
bution as a— 1, where p(a) has a finite limiting value.
Keeping in mind that the maximal value of (n,) is N/2, we
can write

(no)(a) = ~-(N+1)——, a<l, (22)

1-2/N a
= | o pladda~ plnN. @3
0 a

Thus the rare samples, where the second largest trapping
time can be arbitrarily close to the largest one, give a loga-
rithmically diverging contribution to the sample-averaged
occupation at the second barrier.

C. Low-density limit

Contrary to the previous section, where the global density
p=N/L was finite, we study here the case where the number
of particles scales as N~ CL“ for large L, with O0<a<1.
This implies that the particle density is vanishing algebra-
ically according to p(L)~CL*" as L—c. In this case the
number of active particles may be limited by N, which influ-
ences the current.

We have learned in the previous section, that the system
has a limited capacity for storing particles, given by N,
+N,,, and the excess of particles is driven to the macroscopic
condensate. Evidently, as long as N exceeds the capacity of
the system, N, +N,,, the excess particles accumulate in the
condensate and the largest barrier is half filled. Consequently
the current remains the same as the one observed for constant
density. This is, however, no longer true if N is smaller then
the capacity of the system.

For z> 1, the capacity scales as (N,+N;,) ~ L"? according
to (21) and (19). Thus, for a>1/2, the current and the num-
ber of active and inactive particles are not influenced,
whereas N.~ L%. However, if a<<1/2, the condensate van-
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ishes, and since one can show that N, is proportional to N,
for arbitrary current, both must be proportional to L¢. There-
fore according to (17) the current is given by J~[n(L)/LJ
~ [~(-a)

For z<<1, the capacity is dominated by N,, which scales
according to (20). Thus, as far as a>1-z/2, the number of
active and inactive particles and the current agrees with the
case of a finite density, whereas the size of the condensate
scales as N.~L% If a<l-z/2, there is no condensate
present in the system and the number of active particles is
limited to N,~L“% Therefore the corresponding current
scales as J~L~~%. Then the number of inactive particles
scales as N, ~n(L)~ L'~'=®"= according to Eq. (17), which
is indeed a vanishing fraction of the active particles, which
we have tacitly assumed. According to the latter expression,
if z+a<1, N;,—0 as L—, meaning that all particles are
active.

Setting a=0 in the scaling forms obtained for the current
we recover the exact results known for the Sinai walk.

V. ZERO AVERAGE BIAS

If the control parameter is zero, A=0, the average tilt of
the potential landscape and, consequently, the sample-
averaged current are zero even for finite systems. However,
as a consequence of the fluctuations of randomness, the po-
tential landscape of a single sample of size L is tilted, having
a typical slope of L~!/2, in accordance with central-limit theo-
rem. Therefore the quantity of interest is the magnitude of
the current for a finite system.

As the symmetric point is approached, A—0, both the
typical length and amplitude of Brownian excursions are di-
verging as é~A~2 and U,,~ A~!, respectively. According to
the central-limit theorem the typical amplitude is then of the
order of L'?; consequently, the magnitude of the current van-
ishes rapidly with the system size as

—In|J| ~ L2 (24)

Since the largest excursion covers an O(1) fraction of the
landscape, its internal structure has to be investigated in or-
der to get some insight into the properties of the density
profile. We consider first a finite sample with Aj
EEl.Lzl(lnp,»—ln q;)=0, where the potential is single-valued
and the current is zero. In the stationary state of this sample
the particles practically occupy the N lowest-potential sites
and the clusters of occupied sites are represented by Brown-
ian excursions. (These are not to be confused with barriers,
which are excursions starting at extremal sites of the land-
scape.) The number of such excursions, 7, in a system of size
L is estimated as follows. For A=0, the asymptotic distribu-
tion of their length is

pi~ 1" (25)

thus, the length of the largest one among n excursions, /,,,,,
is typically of the order n%. On the other hand, » is related to
L via nf'«lp,dl~ L, yielding n~ L"? and ,,,,~ L. Thus, the
potential landscape contains O(L'?) excursions and the larg-
est one of them is macroscopic. If the landscape is tilted, but
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L=64

FIG. 6. Distribution of interparticle distances calculated numeri-
cally with the bimodal distribution with ¢=0.5 and r=0.2. The
number of samples is 5000. The slope of the straight line is —3/2.

L is large, one can still construct an approximate profile by
cutting the landscape by a straight line, the slope of which
corresponds to the tilt of the landscape. Then sites below the
line are filled with particles. Since the current as well as the
typical tilt of samples vanishes as L— o, the profile con-
structed in this way is expected to be not much different
from the true stationary profile.

According to the above one expects that the distribution
of interparticle distances has the asymptotics as given in
(25), with a finite cutoff O(L). Indeed, numerical results are
in satisfactory agreement with these predictions; see Fig. 6.

VI. RELATED MODELS

In this section we shall apply the phenomenological de-
scription developed above to two generalizations of the dis-
ordered exclusion process.

A. Particles of size d

First, we consider a process, where the particles occupy
d=1 subsequent lattice sites whereas they take steps of unit
length as before [36]. Obviously, the single-particle trapping
time at a certain barrier, 7, is not influenced by d. However,
the time scale for holes to overcome the same barrier which
is now filled by particles of size d is reduced to O(7'¢), since
the holes take steps of length d; consequently, the effective
potential barrier they have to overcome is reduced by a factor
of d. Thus, particle-hole symmetry is broken for d>1 and
half-filling at the largest barrier does not hold anymore. In-
stead, the largest barrier is filled with particles up to some
level %f]m where the parameter b is to be determined from
the equality of particle current and hole current, reading as
e~ Unb=DI6d) — 4o=Un/b For large l7m this yields b=1+d; con-
sequently, the current scales as

J~ L—z/(1+d)’ (26)

where we made use of the scaling relation eU»~ L*. Follow-
ing the arguments of the previous section, similar results can
be derived here, as well. For instance, the current follows a
Fréchet distribution (see Fig. 7 for numerical results) and the
number of inactive particles scales with the system size L as
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In[P(x)]

L =768
L=1536

2 3 4 5
x=-In{JL¥*

x=-In(JL¥3

FIG. 7. Distribution of the current for the exclusion process with
particles of size d=2 (a) and d=3 (b), computed for different sys-
tem sizes. The number of particles is N=L/(2d). Bimodal random-
ness was used with ¢=0.2, r=0.3, where z=0.869 (a), and ¢=0.3,
r=0.3, where z=1.420 (b), whereas the number of samples is 10*.
The solid curves are the Fréchet distributions given in Eq. (16).

Nia —_~ Ld/<1+d). (27)

Finally, we mention that the model with d=2 is related to
a PASEP in which the particles are linked, meaning that the
number of empty sites between two neighboring particles
can be at most 1. It is easy to see that the motion of holes in
this model follows the same rules as, say, the left half of d
=2 particles in the original model. In biological transport
systems, molecular motors are often attached to a rigid back-
bone, where the distance between motors is limited to a finite
value [37]. Exclusion processes with linked particles may be
relevant for modeling the cooperative behavior in these type
of systems.

B. Exclusion process with multiple occupation

Our second example is the disordered version of the gen-
eralized exclusion process [38], where the number of par-
ticles at a given site is limited by the site-independent integer
K=1. The topmost particles at a given site jumps to one of
the neighboring sites with site-dependent rates p; and g;, pro-
vided that the occupation at the target site is smaller than K.
This model evidently interpolates between the exclusion pro-
cess (K=1) and the zero-range process (K=N). Moreover, it
can be roughly interpreted as an exclusion process where the
size of particles, d=1/K, is smaller than 1.

In the stationary state of this generalized model we still
expect a front at the largest barrier separating an almost fully
occupied region (with K particles per site) from an almost
empty region. Moreover, particle-hole symmetry holds for
K>1, as well; therefore, half-filling must be realized at the
largest barrier and the current scales with the system size for
any finite K as for K=1. Numerical results for the distribu-
tion of the current are presented in Fig. 8.

One can also consider the L dependence in K, such as K
=K,L¥, with 0<k <1, leading to a scaling of the number of
inactive particles according to N;,~ KL'?>~L">** The re-
sults of the previous section concerning the low-density limit
can be generalized for this case in a straightforward way.

We mention, finally, that regarding the number of par-
ticles at a given site as a distance variable, the present model
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In[P{x)]

FIG. 8. Numerically calculated distributions of the current for
the generalized exclusion process with K=4, for different system
sizes. The number of particles is N=KL/2. Bimodal randomness
was used with ¢=0.2 and r=0.5, where z=0.5, whereas the number
of samples is 10*. The solid curve is the Fréchet distribution given
in Eq. (16).

can be mapped to an exclusion process with particlewise
disorder, for any K, where the distance between neighboring
particles can be at most K.

VII. NONSTATIONARY PHENOMENA
A. Coarsening

In the following we analyze the approach to the stationary
state in an infinite system. When the system is started in a
homogeneous configuration, it undergoes a coarsening pro-
cess in the course of which the typical size of high-density
and low-density regions, I(z), is growing [6]. The growth rate
of these regions is determined by the current leading to the
differential equation

i)
dt

(1(2))

) (28)

where the current J(I(7)) is a function of the time-dependent
length scale. By making use of the scaling relation of the
current (15) which is valid for A #0 we get for large ¢

(6) ~ ", ¢= % +1 (A#0), (29)

where { is the dynamical exponent related to the coarsening.
We mention that the same scaling relation has already been
derived for the bimodal distribution, with z’ instead of z [6],
which is therefore valid only in the ¢— 0 limit. Using (28)
and (29), the asymptotic time dependence of the current is
given by

J(1) ~ 9D (A #0). (30)

When the symmetric point is approached—i.e.,
A — 0—the exponent z given in Eq. (12), and consequently
the dynamical exponent { diverges as {~z~1/(2A) [28].
Thus, strictly at the symmetric point A=0, the length scale is
growing slower than any power of #, a phenomenon called
anomalous coarsening. Substituting the scaling relation of

the current (24) into (28), we get the asymptotic solution

12 X
[2eCT =, leading to
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N
i
n
RO =N

FIG. 9. Time dependence of the average displacement of a
single particle measured for different values of A # 0. Bimodal ran-
domness was used with c=% and r=%,%,i,é,ﬁ where z
=%,1,2,3,4, respectively. The size of the system is L=8192
whereas N=4096 and the disorder average was performed over 200

samples. The straight lines have the slope % for each z.

1(z) ~ ln(—ﬂ (A=0), (31)
Int

which is indeed an anomalously (logarithmically) slow
growth. Using (28) we obtain for the asymptotic time depen-
dence of the magnitude of the current

Int
J(@)| ~—
0]~

(A=0). (32)
It is, however, circumstantial to measure the size of dense
regions in numerical simulations since they are not con-
nected. Instead, we considered the average displacement of

particles (x(r)) as a function of time for A # 0, which is re-

d{d(1)
lated to the current according to —;—= ’lJJ (). Comparing this

relation with (28) we see that (x(¢)) grows in time as the
length scale /(). Results of numerical simulations shown in
Fig. 9 are in good agreement with the phenomenological
predictions.

We mention that the cutoff of the interparticle distance

distribution () is growing slower than (7). If z<1, the in-
terparticle distances in the low-density regions of size [(z) are

proportional to [I(r)]¥? and thus grow as I(r)~ &%+ If 1
<z<, the interparticle distances in the low-density regions
are proportional to [/(r)]"?, leading to I(r) ~ r"/?+2),

B. Invasion

We consider in this section an open semi-infinite lattice
with entrance rate a=1; furthermore, it is assumed that the
lattice is initially empty. Our interest is in the invading
dynamics—i.e., the dynamics of the first particle that enters
the system and the motion of the bulk of particles. This ques-
tion is of practical relevance; e.g., one may think of a fluid
penetrating a porous medium.

First, we study how the position of the leading particle
evolves in time. Apparently, it must not travel slower than a
single walker since the jumps to the right are never hindered,
contrary to jumps to the left. Thus, for z<<1 the first particle
advances with a constant velocity. For z>1, we consider a
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FIG. 10. Distribution of invasion times calculated for different
system sizes. Bimodal randomness was used with ¢=0.3 and r
=0.2, where z,~ 1.45. The number of samples is 10%,

finite system of size L and determine the finite-size scaling of
the characteristic time 7, needed for the first particle to reach
site L, as follows. The leading contribution to 7, comes from
the trapping time at the largest barrier and at subsequent
barriers. Therefore we assume that the first particle has al-
ready arrived at the largest barrier of the system. Without the
other particles, the typical time to overcome the barrier
would be 7, ~ L*. However, during this period other particles
are arriving at the barrier with rate O(L™/?) determined by
the current at the half-filled largest barrier between the en-
trance site and leading particle. The size of the largest barrier
is at most ~In L, so it takes at most a period of t~L¥?In L
until half-filling of the largest barrier is achieved. Once half-
filling is realized, the trapping time for the leading particle is
only O(L¥?), so the total trapping time at the largest barrier is
at most O(L¥*>In L).

After leaving the largest barrier, the first particle advances
freely until it arrives at a barrier with trapping time larger
than 7y, where it is assisted in passing the barrier again by
other particles. The typical time scale to fill the barrier is
determined by the current and therefore given by ¢~ L¥2
Using the assistance of the following particles the trapping
time of the first particle at the barrier is given by O(L?).
Since there are O(L'?) barriers with trapping time 7> \'7; in
a sample of size L, the characteristic time for getting through
the system scales in leading order as Tp~LZ/ 2412 Therefore
in a semi-infinite system, the position of the leading particle
&, is expected to scale as

&~ 1", with z,= (33)

z+ 1
5
for z>1, whereas zp=1 for z<1.

In order to test the validity of our approach, we have
checked the above results numerically by measuring the dis-
tribution of times the first particle needs to traverse a finite
system. The results are in good agreement with the scaling
relation (33), as shown in Fig. 10. For zero average bias, the
exponent z, is formally infinite and the propagation of the
first particle is anomalously slow.

Compared to the first particle, the bulk of particles moves
slower, as we shall show below. For large times, t>1, a
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IN[N(]4,

FIG. 11. Time dependence of the average number of particles of
measured for different values of A #0. Bimodal randomness was

used with c=% and r= % R % ,é where z=1,2,3, respectively. The size
of the system is L=8192, and the disorder average was performed

over 200 samples. The straight lines have the slope ﬁ for each z.

dense particle cluster is present in the system, which extends
from the entrance site to a barrier which is located at &A(t)
and which must be the largest barrier of the interval
[0,£/(1)]. Since this barrier is half-filled, the current it main-
tains is typically of the order of £(r)%. Through this
(source) barrier, particles are constantly moving to the next
larger barrier to its right. The escape rate at this second bar-
rier is typically [2£41)]7¥%, which is a finite fraction of the
filling current; therefore, the domain behind it is being filled
up by particles with a rate ~J~ &) (Those particles
which escape at the second barrier meanwhile, rush forward,
to the third and subsequent larger barriers spreading in the
domain behind the leading particle.) After a certain time the
domain between the source and the second barrier is com-
pletely filled and the new position of the front is now at the
second barrier. Thus the growth rate of the dense cluster is

. dg/1) o
proportional to the current, —— ~J~ &(1)™?, yielding that
the typical position of the front scales with the time as

§t) ~ 1'e,

with a larger dynamical exponent than that of the leading
particle. In order to check this numerically we have mea-
sured the number of particles, N(z), as a function of time,
which is expected to grow as ;. Results of numerical simu-
lations, shown in Fig. 11, are in good agreement with (34).

(34)

VIII. DISCUSSION

In this paper we have studied the partially asymmetric
exclusion process with lattice disorder and we have obtained
several conjecturedly exact results both for the stationary
state and for related nonstationary problems. In particular for
the biased system we have shown a phase separation phe-
nomenon where a domain wall taking place in the middle of
the largest barrier separates a low- and a high-density phase.
The stationary current in a large finite system goes to zero as
a power law, and the corresponding exponent is just the half
of the dynamical exponent of a single random walker. We
have also classified the particles, which typically belong to a
macroscopic condensate. This condensate, however, is cut up
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by O(L'?) vacant regions of finite size, which are located at
the subleading barriers of the potential landscape. These va-
cant regions, through the particle-hole symmetry, correspond
to filled deep valleys in the low-density phase, which contain
the so-called inactive particles. Finally, the third type of par-
ticles are the active ones, which actually carry the current in
the system. We have also studied the properties of the system
in nonstationary processes, such as coarsening or invasion,
and have shown that the scaling exponents are related to the
dynamical exponent of a single random walker.

Comparing the effect of different types of disorder on the
stationary behavior of the PASEP we can notice some analo-
gies but also several differences. For both particle and lattice
disorder the stationary current is vanishing as a power law of
the size of the lattice and the critical exponents are connected
via a simple relation. Also the phase-separation phenomenon
is common for the two problems. The system with particle
disorder can be treated by renormalizing the particles [11],
arriving at an effective model containing only a single par-
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ticle. Renormalization for lattice disorder has only been per-
formed for a single particle [32], leading to a motion of the
particle in a renormalized landscape. For many particles it is
expected that both the landscape and the particles should be
renormalized and the resulting model is still a many-particle
problem. The actual construction of the renormalization pro-
cedure is the purpose of future research.
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